Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 34

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2022 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2023-025, 117 Pages, 2024/03

JAEA-Review-2023-025.pdf:7.29MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2022. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2022. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training.

JAEA Reports

Differential pressure rise event for filters of HTTR primary helium gas circulators, 1; Investigation of differential pressure rise event

Nemoto, Takahiro; Arakawa, Ryoki; Kawakami, Satoru; Nagasumi, Satoru; Yokoyama, Keisuke; Watanabe, Masashi; Onishi, Takashi; Kawamoto, Taiki; Furusawa, Takayuki; Inoi, Hiroyuki; et al.

JAEA-Technology 2023-005, 33 Pages, 2023/05

JAEA-Technology-2023-005.pdf:5.25MB

During shut down of the HTTR (High Temperature engineering Test Reactor) RS-14 cycle, an increasing trend of filter differential pressure for the helium gas circulator was observed. In order to investigate this phenomenon, the blower of the primary helium purification system was disassembled and inspected. As a result, it is clear that the silicon oil mist entered into the primary coolant due to the deterioration of the charcoal filter performance. The replacement and further investigation of the filter are planning to prevent the reoccurrence of the same phenomenon in the future.

JAEA Reports

Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario (Contract Research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; University of Fukui*

JAEA-Review 2022-046, 108 Pages, 2023/01

JAEA-Review-2022-046.pdf:6.25MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Clarification of debris formation conditions on the basis of the sampling data and experimental study using simulated fuel debris and reinforcement of the analytical results of severe accident scenario" conducted in FY2021. The research on fuel debris so far is based on TMI-2 accident that is typical PWR accident but resent scenario analysis of sever accident progression and sampling data of the in reactor materials predict that fuel debris is diversity and piled up complicatedly depending on the unit and in reactor position. We are necessary to presume the thermodynamic condition of fuel debris during the accident in order to estimate accumulation state of debris.

JAEA Reports

Fuel debris criticality analysis technology using non-contact measurement method (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tokyo Institute of Technology*

JAEA-Review 2022-043, 52 Pages, 2023/01

JAEA-Review-2022-043.pdf:3.48MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2021, this report summarizes the research results of the "Fuel debris criticality analysis technology using non-contact measurement method" conducted in FY2021. The purpose of research was to improve the fuel debris criticality analysis technology using non-contact measurement method by the development of the fuel debris criticality characteristics measurement system and the multi-region integral kinetic analysis code. It was performed by Tokyo Institute of Technology (Tokyo Tech), National Institute of Advanced Industrial Science and Technology (AIST), and National Research Nuclear University (MEPhI) as the first year of four years research project. For the criticality characteristic measurement systems to be developed by the Japanese and Russian sides, …

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2021 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2022-034, 135 Pages, 2023/01

JAEA-Review-2022-034.pdf:8.5MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2021. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station (1F), Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2021. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation / analysis process required for chemical analysis. The purpose of this study is to streamline future planned fuel debris analysis. To promote 1F decommissioning, we will train human resources through on-the-job training. In particular, we will apply the extremely small amount analysis (ICP-MS/MS), which has recently been successful …

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2022-007, 59 Pages, 2022/06

JAEA-Review-2022-007.pdf:2.09MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2018, this report summarizes the research results of the "Identification of altered phases of fuel debris by laser fluorescence spectroscopy" conducted from FY2018 to FY2021 (this contract was extended to FY2021). Since the final year of this proposal was FY2021, the results for four fiscal years were summarized. The present study aims to identify alteration phases occurring on the surface fuel debris at various conditions, using time-resolved laser fluorescence spectroscopy (TRLFS), which is a selective analytical technique for U(VI), a major constituent of fuel debris and stable in oxidizing conditions.

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2020 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2021-056, 98 Pages, 2022/02

JAEA-Review-2021-056.pdf:9.08MB

The Collaborative Laboratories for Advanced Decommissioning Science (CLADS), Japan Atomic Energy Agency (JAEA), had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project (hereafter referred to "the Project") in FY2020. The Project aims to contribute to solving problems in the nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. (TEPCO). For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. The sponsor of the Project was moved from the Ministry of Education, Culture, Sports, Science and Technology to JAEA since the newly adopted proposals in FY2018. On this occasion, JAEA constructed a new research system where JAEA-academia collaboration is reinforced and medium-to-long term research/development and human resource development contributing to the decommissioning are stably and consecutively implemented. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2020. The fuel debris retrieved from the Fukushima Daiichi Nuclear Power Station (1F) is analyzed in the second building of the Okuma Analysis and Research Center. The characteristics of fuel debris, such as the mixture of nuclear fuel, reactor components, and concrete, are not clear, and its analysis will be the first attempt in the world. Understanding the properties of fuel debris is necessary for handling, criticality control, storage control, etc. A key technique is the chemical analysis of actinide nuclides. We develop sample pretreatment technology and separation/analysis process required for chemical analysis.

Journal Articles

Analysis of Fukushima-Daiichi Nuclear Power Plant Unit 3 pressure data and obtained insights on accident progression behavior

Sato, Ikken

Nuclear Engineering and Design, 383, p.111426_1 - 111426_19, 2021/11

 Times Cited Count:5 Percentile:64.12(Nuclear Science & Technology)

JAEA Reports

Development of extremely small amount analysis technology for fuel debris analysis (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; Tohoku University*

JAEA-Review 2020-064, 95 Pages, 2021/02

JAEA-Review-2020-064.pdf:9.48MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Development of extremely small amount analysis technology for fuel debris analysis" conducted in FY2019.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research); FY2019 Nuclear Energy Science & Technology and Human Resource Development Project

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2020-053, 64 Pages, 2021/01

JAEA-Review-2020-053.pdf:3.58MB

JAEA/CLADS had been conducting the Nuclear Energy Science & Technology and Human Resource Development Project in FY2019. Among the adopted proposals in FY2019, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy" conducted in FY2019.

Journal Articles

Criticality configuration design methodology applied to the design of fuel debris experiment in the new STACY

Gunji, Satoshi; Tonoike, Kotaro; Clavel, J.-B.*; Duhamel, I.*

Journal of Nuclear Science and Technology, 58(1), p.51 - 61, 2021/01

 Times Cited Count:1 Percentile:11.8(Nuclear Science & Technology)

The new critical assembly STACY will be able to contribute to the validation of criticality calculations related to the fuel debris. The experimental core designs are in progress in the frame of JAEA/IRSN collaboration. This paper presents the method applied to optimize the design of the new STACY core to measure the criticality characteristics of pseudo fuel debris that simulated Molten Core Concrete Interaction (MCCI) of the fuel debris. To ensure that a core configuration is relevant for code validation, it is important to evaluate the reactivity worth of the main isotopes of interest and their k$$_{rm eff}$$ sensitivity to their cross sections. In the case of the fuel debris described in this study, especially for the concrete composition, silicon is the nucleus with the highest k$$_{rm eff}$$ sensitivity to the cross section. For this purpose, some parameters of the core configuration, as for example the lattice pitches or the core dimensions, were adjusted using optimization algorithm to find efficiently the optimal core configurations to obtain high sensitivity of silicon capture cross section. Based on these results, realistic series of experiments for fuel debris in the new STACY could be defined to obtain an interesting feedback for the MCCI. This methodology is useful to design other experimental conditions of the new STACY.

JAEA Reports

Analysis of debris samples of Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station (Translated document)

Task Force on Research Strategy for Debris of Fukushima Daiichi Nuclear Power Station

JAEA-Review 2020-055, 171 Pages, 2020/12

JAEA-Review-2020-055.pdf:5.66MB

Design, planning and control of debris-related processes, namely retrieval, storage management, processing and disposal of the debris, are required for the safe and steady decommissioning of Fukushima Daiichi Nuclear Power Station (1F). Status inside primary containment vessel of 1F must be known by the PCV investigation and fuel debris sample analysis. Continuous updating and improvement of the process design are important through ascertainment of the cause of the accident. The roadmap for the 1F decommissioning have shown the milestone of commencement of trial retrieval of fuels debris within 2021, which indicates the analysis of fuel debris sample begin in earnest. This report recommends required debris analysis in relation with issues for the retrieval, storage management, processing and disposal, and ascertainment of the cause of the 1F accident. Practical analysis plan is expected to be prepared based on this report.

Journal Articles

Chemical forms of uranium evaluated by thermodynamic calculation associated with distribution of core materials in the damaged reactor pressure vessel

Ikeuchi, Hirotomo; Yano, Kimihiko; Washiya, Tadahiro

Journal of Nuclear Science and Technology, 57(6), p.704 - 718, 2020/06

 Times Cited Count:6 Percentile:59.94(Nuclear Science & Technology)

To suggest efficient process of the fuel debris treatment after the retrieval from the Fukushima Daiichi Nuclear Power Plant (1F), thorough investigation is indispensable on potential source of U in the fuel debris. Estimation on the fuel debris accumulated in the reactor pressure vessel is specifically important due to its limited accessibility. The present study aims to estimate the chemical forms of U in the in-vessel fuel debris, especially in the minor phases such as metallic phases, by performing the thermodynamic calculation considering the material relocation and changing environment during the accident progression in the 1F Unit 2. Input conditions for the thermodynamic calculation such as composition, temperature, and oxygen amount were assumed mainly based on the results of severe accident analysis. The chemical form of U varied depending on the local amount of Fe and O. In regions of low steel content, the U-containing metallic phase was dominated by $$alpha$$-(Zr,U)(O), while regions of high steel content were dominated by Fe$$_{2}$$(Zr,U) (Laves phase). A few percent of U was transferred to the metallic phases under reducing conditions, raising challenging issues on the chemical removal of nuclear material from fuel debris.

JAEA Reports

Analysis of debris samples of Tokyo Electric Power Company Holdings Fukushima Daiichi Nuclear Power Station

Task Force on Research Strategy for Debris of Fukushima Daiichi Nuclear Power Station

JAEA-Review 2020-004, 140 Pages, 2020/05

JAEA-Review-2020-004.pdf:4.22MB

Design, planning and control of debris-related processes, namely retrieval, storage management, processing and disposal of the debris, are required for the safe and steady decommissioning of Fukushima Daiichi Nuclear Power Station (1F). Status inside primary containment vessel of 1F must be known by the PCV investigation and fuel debris sample analysis. Continuous updating and improvement of the process design are important through ascertainment of the cause of the accident. The roadmap for the 1F decommissioning have shown the milestone of commencement of trial retrieval of fuels debris within 2021, which indicates the analysis of fuel debris sample begin in earnest. This report recommends required debris analysis in relation with issues for the retrieval, storage management, processing and disposal, and ascertainment of the cause of the 1F accident. Practical analysis plan is expected to be prepared based on this report.

JAEA Reports

Identification of altered phases of fuel debris by laser fluorescence spectroscopy (Contract research) FY2018 Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development

Collaborative Laboratories for Advanced Decommissioning Science; The University of Tokyo*

JAEA-Review 2019-030, 66 Pages, 2020/03

JAEA-Review-2019-030.pdf:7.11MB

JAEA/CLADS, had been conducting the Center of World Intelligence Project for Nuclear Science/Technology and Human Resource Development (hereafter referred to "the Project") in FY2018. The Project aims to contribute to solving problems in nuclear energy field represented by the decommissioning of the Fukushima Daiichi Nuclear Power Station, Tokyo Electric Power Company Holdings, Inc. For this purpose, intelligence was collected from all over the world, and basic research and human resource development were promoted by closely integrating/collaborating knowledge and experiences in various fields beyond the barrier of conventional organizations and research fields. Among the adopted proposals in FY2018, this report summarizes the research results of the "Identification of Altered Phases of Fuel Debris by Laser Fluorescence Spectroscopy". In the present study, we focus on uranium that is the main component element in debris, and identify the altered phase produced on the debris surface under various conditions by time-resolved laser fluorescence spectroscopy (TRLFS) with high sensitivity to hexavalent uranium (U(VI)) that is stable in oxidation environment. In particular, further high-sensitive and high-resolution measurements are implemented by improving the fluorescence yields and suppressing the broadening of the peaks through the measurements at ultra-low temperature. In addition, with the supports by quantum chemical calculations, multivariate analysis, and machine learning, the method will lead to the identification of multicomponent and heterogeneous altered phase of fuel debris.

Journal Articles

Current situation of OECD/NEA, Preparatory Study on Analysis of Fuel debris (PreADES) project

Nakayoshi, Akira; Journeau, C.*; Rempe, J.*; Barrachin, M.*; Bottomley, D.; Nauchi, Y.*; Song, J. H.*

Proceedings of 2019 International Workshop on Post-Fukushima Challenges on Severe Accident Mitigation and Research Collaboration (SAMRC 2019) (USB Flash Drive), 6 Pages, 2019/11

Journal Articles

Current situation of OECD/NEA, Preparatory Study on Analysis of Fuel debris (PreADES) project

Nakayoshi, Akira; Bottomley, D.; Washiya, Tadahiro

Proceedings of 56th Annual Meeting on Hot Laboratories and Remote Handling (HOTLAB 2019) (Internet), 3 Pages, 2019/00

Journal Articles

Outline of Japan Atomic Energy Agency's Okuma Analysis and Research Center, 3; Laboratory-2

Ito, Masayasu; Ogawa, Miho; Inoue, Toshihiko; Yoshimochi, Hiroshi; Koyama, Shinichi; Koyama, Tomozo; Nakayama, Shinichi

Proceedings of 54th Annual Meeting of Hot Laboratories and Remote Handling (HOTLAB 2017) (Internet), 7 Pages, 2017/00

Laboratory-2 of the Okuma Analysis and Research Center will be used for the technological development of techniques to treat and dispose fuel debris, etc. The specific analytical content and its importance has been discussed by an experts committee in FY 2016. The committee regarded fuel debris retrieval and criticality control related topics as the most important content. As a result, it will be a priority to introduce equipment to perform examination such as shape and size measurement, compositional and nuclide analysis, hardness and toughness test, and radiation dose rate measurement. In addition, since sample will have high dose rates (1 Sv/h or more) at the time of reception, hot cells with enough radiation shielding ability will be used. In the hot cell, the pre-processing will be performed, such as cutting and dissolution of samples. Processed samples will be examined in concrete cells, steel cells, glove boxes and fume hoods. Detail design of Laboratory-2 started on FY 2017.

JAEA Reports

Study on steam explosions with molten silicon

Moriyama, Kiyofumi; Maruyama, Yu*; Nakamura, Hideo

JAERI-Research 2002-021, 36 Pages, 2002/11

JAERI-Research-2002-021.pdf:6.0MB

Silicon is a material which is easily oxidized like zirconium which is one of the LWR core materials. Also, its steam explosion behavior is a concern in semi-conductor industries where its melt is handled. In this study, steam explosion behavior of silicon melt and contribution of oxidation reaction in a steam explosion were investigated. Two cases of experiments were performed by dropping silicon melt into a water pool and both produced spontaneous steam explosions. Energy conversion ratio was 4--9% which was similar or slightly larger compared with previous experiments with thermite melt. Fragmentation of the melt was finer than previous experiments and the mass median diameter of the debris was 65--85$$mu$$m. An oxide layer of about 5$$mu$$m thick was fond on the debris surface indicating possibility of oxidation of several % of the melt.

JAEA Reports

34 (Records 1-20 displayed on this page)